

## 【みんなの住宅研究所】推奨仕様リスト<u>「構造」(1) プロ向け</u>

|    |           | A. 国が定める基準を元にしたレベル                              | B. 当団体が考える推奨レベル                            | C. 当団体が考える理想レベル                             |
|----|-----------|-------------------------------------------------|--------------------------------------------|---------------------------------------------|
| 1  | 耐震等級      | 建築基準法(耐震等級1)レベル(以下のいずれか)                        | 耐震等級3 (以下のいずれか、積雪荷重考慮時は2も可)                | (以下のいずか。どちらもBを満たした上での追加を前提)                 |
|    | (構造検討方法)  | 1.仕様規定による安全確認(11項目中3項目の計算実施): <mark>耐震性低</mark> | 1.品確法に基づく性能表示計算による耐震等級3: <mark>耐震性高</mark> | 1.耐震等級3+制振ダンパー(壁倍率ありで <b>塑性域</b> で有効): 既築向き |
|    |           | 2.許容応力度計算による耐震等級1(3階建は必須): <mark>耐震性高</mark>    | 2.許容応力度計算による耐震等級3: <mark>耐震性さらに高</mark>    | 2.耐震等級3+制振ダンパー(壁倍率なしの <b>弾性域</b> で有効):新築向き  |
| 2  | 構造区画      | 基準なし                                            | ・柱と梁で囲まれた構造区画が成立                           | ※Bを満たした上で                                   |
|    |           |                                                 | ・耐力壁区画の四隅(と直下)には柱を設置                       | ・構造区画の最大は短辺3.64mx5.46m                      |
| 3  | 耐力壁線、耐力壁量 | (以下のいずれか)                                       | ・耐力壁線区画は水平構面でフタをする(特に勾配天井部に注意)             | ・耐力壁線長の1/4以上の耐力壁量を確保                        |
|    | (水平構面)    | 1.「46条壁量計算」OK(充足率1.0超え~2.0未満): <b>必須</b>        | ・1P(910mm)ごとに柱を設置、袖壁や梁上耐力壁は基本禁止            | ・勾配天井部は登り梁仕様とする                             |
|    |           | 2.「46条壁量計算」OK(充足率2.0以上): <b>より安心</b>            |                                            |                                             |
| 4  | 直下率       | 基準なし                                            | ・柱直下率は全体で60%以上確保                           | ・外周部除く内部の柱直下率で60%以上確保                       |
|    |           |                                                 |                                            |                                             |
| 5  | 特殊形状      | 基準なし                                            | ・吹抜けが面する外壁は直交2面まで                          |                                             |
|    |           |                                                 | (3面以上や前後の平行2面は不可)                          | ※分割面の剛性確保と部位ごとの層間変形角を近づける                   |
|    |           |                                                 |                                            | ※吹抜けがある場合はB.を満たした上で                         |
| 6  | 壁の配置バランス  | (以下のいずれか)                                       | ・偏心率は0.15~0.3の間                            | ・偏心率は0.15未満                                 |
|    |           | 1.四分割法の計算がOK: 必須                                | ・太陽光パネル設置位置と荷重を偏心検討に反映                     | ・太陽光パネルの有無と位置による荷重を構造計算に反映                  |
|    |           | 2.偏心率OK(0.3未満) : <mark>より安心</mark>              |                                            | ・同上は将来設置・将来撤去の場合も含んだ複数計算を行う                 |
| 7  | 柱頭柱脚の接合   | (以下のいずれか)                                       | ・建物隅角部の引抜力は30kN以下(耐力壁配置にて調整)               | ・HD金物取付部の土台の部材検討実施                          |
|    |           | 1.告示確認による金物選択:簡易な検討(コスト増の場合あり)                  |                                            | ※曲げ、せん断、めり込み、破壊等の検討                         |
|    |           | 2.N値計算による金物選択: <b>1.よりも詳細な検討</b>                |                                            |                                             |
| 8  | スパン表      | 基準なし                                            | ・スパン表は使用しない (横架材、基礎ともに許容応力度計算)             | ・梁上耐力壁の適用は最大2次梁まで                           |
|    | (構造計画・設計) | ・適用可能な箇所についてのみ使用                                |                                            |                                             |
|    |           | (等分布荷重部、人通口等)                                   |                                            |                                             |
| 9  | 基礎        | ・基礎梁は耐力壁線区画下で連続し四周で閉じる                          | ・耐力壁下の半島型基礎は禁止                             | ・高低差がある場合の擁壁検討や、既存擁壁付近の杭施工時の                |
|    |           | ※ベタ基礎含めて人通口等の立ち上がり部開口下は地中梁設置                    | ※ベタ基礎の場合はAを満たした上で                          | 片持ち基礎設計ができている                               |
|    |           |                                                 | ※ベタ基礎の場合はスラブごとに配筋量検討                       |                                             |
| 10 | 地盤と建物の関係  | ・(SWSなど)地盤調査結果により沈下、支持力、液状化の検討                  | ・上部荷重の算出による地盤補強方法の検討と基礎設計                  | ・常時微動探査法による地盤の揺れやすさ評価の導入                    |
|    | (基礎設計)    |                                                 | ※杭施工の場合は上部軸力との整合設計                         | ※A.およびB.を満たした上で                             |
|    |           |                                                 |                                            |                                             |